EconPapers    
Economics at your fingertips  
 

Identification of homogenous regions in Gorganrood basin (Iran) for the purpose of regionalization

Atefeh Abdolhay (), Bahram Saghafian, Mohd Soom and Abdul Ghazali

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2012, vol. 61, issue 3, 1427-1442

Abstract: Estimation of flood in basins with poor condition of hydrometric stations as in quantity and quality is a dominant problem around the world, mainly in developing country where lack of funds and human resources cause more limitation in number of gauging stations. One of the areas that experience frequent floods and also suffer from small number of stations in Iran is Gorganrood basin. So there is a great need for the estimation and prediction of runoff in this area to prevent any future floods. Due to insufficient station in this area, direct prediction of flood is not applicable. Regional flood frequency analysis is a practical and widely used solution for these situations, which involves the identification of homogenous regions. Gorganrood region was hydrologically homogenized according to the extracted parameters that influence the floods. One of these parameters was Normalized Difference Vegetation Index (NDVI) driven from MODIS images. Curvature is another parameter that relates to topographic attributes. From factor analysis, the most appropriate variables were selected. According to these parameters (NDVI, curvature, area, slope…), the regions were classified into homogenous regions. For the purpose of homogenization, hierarchical (wards) clustering, fuzzy clustering and Kohonen method were applied. L-moment technique was used for the investigation of the results. The heterogeneity measure for one of the groups (Group 1) was more than two; therefore some modifications were applied. The region was grouped into two homogenous subregions. All of the clustering methods showed same results. The models showed that class 4 of NDVI is influential on flood in some return periods. The resulted models can be applied in future studies in different aspects of practical hydrology. Copyright Springer Science+Business Media B.V. 2012

Keywords: Homogeneous region; Fuzzy clustering; Self-organizing map; L-moment (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-011-0076-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:61:y:2012:i:3:p:1427-1442

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-011-0076-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:61:y:2012:i:3:p:1427-1442