EconPapers    
Economics at your fingertips  
 

Real-time prediction of a severe cyclone ‘Jal’ over Bay of Bengal using a high-resolution mesoscale model WRF (ARW)

C. Srinivas (), V. Yesubabu, K. Hariprasad, S. Ramakrishna and B. Venkatraman

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 65, issue 1, 357 pages

Abstract: Real-time predictions for the JAL severe cyclone formed in November 2010 over Bay of Bengal using a high-resolution Weather Research and Forecasting (WRF ARW) mesoscale model are presented. The predictions are evaluated with different initial conditions and assimilation of observations. The model is configured with two-way interactive nested domains and with fine resolution of 9 km for the region covering the Bay of Bengal. Simulations are performed with NCEP GFS 0.5° analysis and forecasts for initial/boundary conditions. To examine the impact of initial conditions on the forecasts, eleven real-time numerical experiments are conducted with model integration starting at 00, 06, 12, 18 UTC 4 Nov, 5 Nov and 00, 06, 12 UTC 6 Nov and all ending at 00 UTC 8 Nov. Results indicated that experiments starting prior to 18 UTC 04 Nov produced faster moving cyclones with higher intensity relative to the IMD estimates. The experiments with initial time at 18 UTC 04 Nov, 00 UTC 05 Nov and with integration length of 78 h and 72 h produced best prediction comparable with IMD estimates of the cyclone track and intensity parameters. To study the impact of observational assimilation on the model predictions FDDA, grid nudging is performed separately using (1) land-based automated weather stations (FDDAAWS), (2) MODIS temperature and humidity profiles (FDDAMODIS), and (3) ASCAT and OCEANSAT wind vectors (FDDAASCAT). These experiments reduced the pre-deepening period of the storm by 12 h and produced an early intensification. While the assimilation of AWS data has shown meagre impact on intensity, the assimilation of scatterometer winds produced an intermittent drop in intensity in the peak stage. The experiments FDDAMODIS and FDDAQSCAT produced minimum error in track and intensity estimates for a 90-h prediction of the storm. Copyright Springer Science+Business Media B.V. 2013

Keywords: Tropical cyclone; ARW; Real-time prediction; Data assimilation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0364-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:65:y:2013:i:1:p:331-357

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-012-0364-5

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:331-357