Breaking pattern and critical breaking condition of Japanese pine trees on coastal sand dunes in huge tsunami caused by Great East Japan Earthquake
Norio Tanaka (),
Junji Yagisawa and
Satoshi Yasuda
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 65, issue 1, 423-442
Abstract:
Coastal vegetation is widely recognized to reduce tsunami damage to people and buildings, and it has been studied recently because it requires relatively little capital investment compared with artificial measures, provides human-friendly beach fronts, and enhances inter-relationships with other ecological systems. However, the tsunami caused by the Great East Japan Earthquake at 14:46 JST on March 11, 2011, with a magnitude of 9.0 and epicenter 129 km east of Sendai, broke most of the sea wall (tsunami gates, large embankments) and caused catastrophic damage to coastal forests in the Tohoku and Kanto districts of Japan. A field survey was conducted to elucidate the critical breaking condition of Japanese coastal pine trees. Tree-trunk breakage was observed when the sea embankment was washed out or when there was no sea embankment and the tree was under strong inertia force or impact force by debris. Even though the trunk bending and breaking phenomena are different, statistical analysis showed that the critical diameters for trunk bending and trunk breaking were not very different. The overturning phenomenon is a little more complex than trunk breaking because the resistive force is a function of the substrate and root anchorage. An equation to determine the critical diameters for trunk bending, trunk breaking, and overturning was derived as a function of tsunami water depth, soil-root strength, and the hydrodynamic parameter (H D ) formulated by Froude number, drag coefficient, and the ratio of impact force to drag force considering the physical mechanisms to resist the tsunami. Trunk bending and breaking were closely related to tsunami water depth and the hydrodynamic parameter (H D ), but tree overturning was found to be more site specific, and the root-soil strength greatly affected the critical value. The proposed critical diameter equation and its coefficient are useful for the design of an inland forest of pine trees that can trap large trees, cars, debris, etc., to its breaking limit. The trapping function should be utilized more in the future designs of inland forests, if possible, on embankments. Copyright Springer Science+Business Media B.V. 2013
Keywords: Tsunami; Coastal vegetation; Trapping effect; Inland forest; Classification of tree-breaking pattern (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0373-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:65:y:2013:i:1:p:423-442
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-012-0373-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().