Postseismic relaxation due to Bhuj earthquake on January 26, 2001: possible mechanisms and processes
C. Reddy (),
P. Sunil,
Roland Bürgmann,
D. Chandrasekhar and
Teruyuki Kato
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 65, issue 2, 1119-1134
Abstract:
Earthquakes cause static stress perturbations in the nearby crust and mantle. Obeying rheological laws, this stress relaxes in a time frame of months to years with the spatial extent of few km to hundreds of km. While postseismic relaxation associated with major inter-plate earthquakes is well established, there have been few opportunities to explore its occurrence following intraplate earthquakes. The M w 7.6 Bhuj earthquake on January 26, 2001 in western India is considered to be an intraplate event and provided a unique opportunity to examine post-earthquake relaxation processes sufficiently away from plate boundaries. To study the characteristics of transient postseismic deformation, six Global Positioning System campaigns were made at 14 sites. The postseismic transients were delineated after removing plate motions from the position time series. Postseismic deformation has been observed at all the sites in the study area. During 2001–2007, the site closest to the epicenter exhibited postseismic deformation of about 30 and 25 mm in the north and east components, respectively. Time series of the NS and EW components of the postseismic transients can be fitted to both logarithmic and exponential functions. Close to the epicenter, the logarithmic function fits well to the initial transient, and an exponential function fits well to the later phases. The remaining sites (located east and west of the epicentral region) exhibited significantly diminished north–south relaxation. Rapidly decaying afterslip and poroelastic mechanisms seem to be responsible for postseismic relaxation in the vicinity of epicenter during the initial period subsequent to the Bhuj earthquake. Postseismic relaxation by viscoelastic flow below the seismogenic zone seems to affect displacements across the entire Bhuj region. This paper presents the characteristics of postseismic transients and deformation processes in the scenario of the highly heterogeneous crust in the Bhuj region. Copyright Springer Science+Business Media B.V. 2013
Keywords: GPS; Postseismic transients; Afterslip; Viscoelastic; Rheology (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0184-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:65:y:2013:i:2:p:1119-1134
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-012-0184-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().