A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method
Mohammad Mokhtari (),
Robiah Adnan and
Ibrahim Busu
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 65, issue 3, 1249-1274
Abstract:
The accurate assessment of drought and its monitoring is highly depending on the selection of appropriate indices. Despite the availability of countless drought indices, due to variability in environmental properties, a single universally drought index has not been presented yet. In this study, a new approach for developing comprehensive agricultural drought index from satellite-derived biophysical parameters is presented. Therefore, the potential of satellite-derived biophysical parameters for improved understanding of the water status of pistachio (Pistachio vera L.) crop grown in a semiarid area is evaluated. Exploratory factor analysis with principal component extraction method is performed to select the most influential parameters from seven biophysical parameters including surface temperature (T s ), surface albedo (α), leaf area index (LAI), soil heat flux (G o ), soil-adjusted vegetation index (SAVI), normalized difference vegetation index (NDVI), and net radiation (R n ). T s and G o were found as the most effective parameters by this method. However, T s , LAI, α, and SAVI that accounts for 99.6 % of the total variance of seven inputs were selected to model a new biophysical water stress index (BPWSI). The values of BPWSI were stretched independently and compared with the range of actual evapotranspiration estimated through well-known METRIC (mapping evapotranspiration at high resolution with internal calibration) energy balance model. The results showed that BPWSI can be efficiently used for the prediction of the pistachio water status (RMSE of 0.52, 0.31, and 0.48 mm/day on three image dates of April 28, July 17, and August 2, 2010). The study confirmed that crop water status is accounted by several satellite-based biophysical parameters rather than single parameter. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Biophysical water stress index; Drought; Evapotranspiration; Factor analysis; Principal component analysis; Remote sensing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0408-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:65:y:2013:i:3:p:1249-1274
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-012-0408-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().