EconPapers    
Economics at your fingertips  
 

Deformation analysis of a burst red mud reservoir using combined descending and ascending pass ENVISAT ASAR data

Gyula Grenerczy () and Urs Wegmüller ()

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 65, issue 3, 2205-2214

Abstract: After the catastrophic failure of a red mud reservoir in Hungary, we performed a persistent scatterer radar interferometry (PSI) deformation analysis to investigate the stability and motion history of the entire area focusing on the dam walls of the collapsed structure. Our aim was to contribute to the better understanding of the disaster and, more importantly, to see whether it was possible to prognosticate and consequently prevent the failure of the reservoir and to help avoiding such occurrences worldwide. Our earlier data revealed that the surroundings were generally very stable over the investigated 8 years time interval, whereas significant continuous motions were detected on the embankments. After these first results, we continued our PSI deformation study with the processing and evaluation of the complete ascending pass ENVISAT dataset and later with the combination of the results of the two different observation geometries. From our descending and ascending data, it was possible to combine motions determined in line-of-sight directions and to investigate horizontal and vertical components allowing the estimation of ‘total’ velocity vectors, magnitude and directions, at those locations of the reservoir and on the entire study area where reflections from both projections were available. It was also possible to get information from several other segments of the embankments of the failed reservoir where the descending geometry was unfavorable. With the combination, the complete ENVISAT PSI analysis using both ascending and descending orbit data enabled us to constrain the role of the soil structure and to look at the differential uplift or subsidence due to swelling soil effect. It also enabled us to constrain the role of the deposited mud, slurry, and accumulated water, and the strength and design of the structure in the failure of the red mud reservoir. Models were also constructed to visualize the observed motions of the reservoir embankments and to highlight the location of strain and stress accumulation providing significant constraints on the natural and anthropogenic origin of the disaster. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: InSAR; Remote sensing; Space geodesy; Dam failure; Reservoir (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0470-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:65:y:2013:i:3:p:2205-2214

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-012-0470-4

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:2205-2214