Considerations for modeling burn probability across landscapes with steep environmental gradients: an example from the Columbia Mountains, Canada
Marc-André Parisien (),
Gregg Walker,
John Little,
Brian Simpson,
Xianli Wang and
Daniel Perrakis
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 66, issue 2, 439-462
Abstract:
Fire and land management in fire-prone areas can be greatly enhanced by estimating the likelihood of fire at every point on the landscape. In recent years, powerful fire simulation models, combined with an in-depth understanding of an area’s fire regime and fire environment, have allowed forest managers to estimate spatial burn probabilities. This study describes a methodology for selecting input data and model parameters when creating burn probability maps in difficult-to-model areas and reports the results of a case study for a large area of the Columbia Mountains, British Columbia, Canada. In addition to having particularly mountainous topography, the study area is covered by vegetation types that are poorly represented in fire behavior systems, even though these vegetation types have experienced considerable (if highly irregular) fire activity in premodern times (before 1920). Parameterization of the fire environment for simulation modeling was accomplished by combining various types of fire information (e.g., fire history studies, reconstructed fire climatologies), new technologies (high-resolution remotely sensed data, wind flow modeling), and—a must in data-limited areas—ample expert advice. In this study, we made extensive use of personal accounts from experienced fire behavior officers for the creation of model inputs. Despite difficulties in validating outputs of burn probability models, the multisource model-building approach described here provides a conservative, yet informative, means of estimating the likelihood of fire. Due to the data-intensive nature of the modeling and paucity of input data, an argument is made that modelers must focus on the inputs that are the most influential for their study area. Copyright Her Majesty the Queen in Right of Canada 2013
Keywords: Burn probability; Fire; Simulation modeling; Fuels; Ignitions; Weather (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0495-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:66:y:2013:i:2:p:439-462
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-012-0495-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().