EconPapers    
Economics at your fingertips  
 

Impacts of topography and land cover change on thunderstorm over the Huangshan (Yellow Mountain) area of China

Die Wang, Junfeng Miao () and Zhemin Tan

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 67, issue 2, 675-699

Abstract: In this study, the Weather Research and Forecasting (WRF) model (version 3.1.1) was used to simulate a thunderstorm event which occurred on August 18, 2010, over the Yellow Mountain area of China. This event was a typical thunderstorm embedded in high-pressure systems. First, the development processes of mountain–valley breeze and convective cells were studied; second, this study focused on revealing the influencing mechanism of complex topography and heterogeneous land cover on thunderstorm by removing the Yellow Mountain and changing the land use categories. On flat terrain, the simulated results displayed that the convection weakened persistently, cloud top decreased sharply, and intensity of precipitation reduced. Moreover, there was no up-slope valley breeze, convergence, and lifting of water vapor could be found on the mountaintop. Then, the role of land use was revealed by changing original land cover into grassland, mixed forests, and bare soil in the innermost area, respectively. When covered by grassland, there were less sensible heating and lower moisture, leading to the planet boundary layer height decreasing and vertical lifting weakening, which tended to cause more stable atmosphere and less rainfall on the mountaintop; when covered by mixing forests, only small differences presented in simulated meteorological fields, including wind fields, moisture, cloud water mixing ratio, precipitation, and other fields; when covered by bare soil, the latent heating was more important in influencing the process of thunderstorm. There were less latent heating and lower accumulated water vapor compared to other experiments, causing vertical lifting weakening, stability of atmosphere increasing, and precipitation decreasing. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: The Yellow Mountain; Thunderstorm; Topography; Land cover change (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0595-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:67:y:2013:i:2:p:675-699

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0595-0

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:67:y:2013:i:2:p:675-699