Hybrid attenuation model for estimation of peak ground accelerations in the Kutch region, India
A. Joshi,
Ashvini Kumar (),
K. Mohan and
B. Rastogi
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 68, issue 2, 249-269
Abstract:
The Kutch region of Gujarat in India is the locale of one of the most devastating earthquake of magnitude (M w ) 7.7, which occurred on January 26, 2001. Though, the region is considered as seismically active region, very few strong motion records are available in this region. First part of this paper uses available data of strong motion earthquakes recorded in this region between 2006 and 2008 years to prepare attenuation relation. The developed attenuation relation is further used to prepare synthetic strong motion records of large magnitude earthquakes using semiempirical simulation technique. Semiempirical simulation technique uses attenuation relation to simulate strong ground motion records of any target earthquake. The database of peak ground acceleration obtained from simulated records is used together with database of peak ground acceleration obtained from observed record to develop following hybrid attenuation model of wide applicability in the Kutch region: $$ \begin{aligned} \ln \left( {\text{PGA}} \right) &=- 2.56 + 1.17 \, M_{\text{w}} - \, 0.015R - 0.0001\ln \left( {E + 15} \right) \\ &\quad 3.0 \le M_{\text{w}} \le 8.2;\quad 12 \le R \le 120;\quad {\text{std}} . {\text{ dev}}.(\sigma ): \pm 0.5 \\ \end{aligned} $$ ln ( PGA ) = − 2.56 + 1.17 M w − 0.015 R − 0.0001 ln ( E + 15 ) 3.0 ≤ M w ≤ 8.2 ; 12 ≤ R ≤ 120 ; std . dev . ( σ ) : ± 0.5 In the above equation, PGA is maximum horizontal ground acceleration in gal, M w is moment magnitude of earthquake, R is hypocentral distance, and E is epicentral distance in km. The standard deviation of residual of error in this relation is 0.5. This relation is compared with other available relations in this region, and it is seen that developed relation gives minimum root mean square error in comparison with observed and calculated peak ground acceleration from same data set. The applicability of developed relation is further checked by testing it with the observed peak ground acceleration from earthquakes of magnitude (M w ), 3.6, 4.0, 4.4, and 7.7, respectively, which are not included in the database used for regression analysis. The comparison demonstrates the efficacy of developed hybrid attenuation model for calculating peak ground acceleration values in the Kutch region. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Strong ground motion; Attenuation relation; Semiempirical; Seismicity (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0524-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:68:y:2013:i:2:p:249-269
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-012-0524-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().