EconPapers    
Economics at your fingertips  
 

A genetic algorithm-based grey method for forecasting food demand after snow disasters: an empirical study

Zheng-Xin Wang ()

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 68, issue 2, 675-686

Abstract: Determining the food supply after natural disasters is necessary to ensure the safety and social stability of people in disaster areas. An accurate prediction of food demand can help in the creation of a rational food supply program after natural disasters. This study proposes a grey prediction method to deal with irregular fluctuations in food demand after snowstorms. A GM(1,1) model with adaptive background values was established, and the Fourier series was applied to describe the irregular fluctuations in residuals. A genetic algorithm was designed based on GM(1,1) and Fourier series to optimize model parameters and to minimize the mean absolute percentage error. An optimal predictive function was also constructed by using the combined GM(1,1), Fourier series, and optimal parameters. The proposed forecasting method was used to predict three vegetables demand after the 2008 Chinese winter storm and was compared with the traditional GM(1,1) model. Results show that the proposed method has superior forecasting performance over traditional grey methods. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Snow disasters; Food demand; Grey systems theory; Genetic algorithm; Forecasting (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0644-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:68:y:2013:i:2:p:675-686

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0644-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:675-686