Decline in horizontal surface visibility over India (1961–2008) and its association with meteorological variables
Ashok Jaswal (),
Naresh Kumar,
Anup Prasad and
Menas Kafatos
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 68, issue 2, 929-954
Abstract:
Horizontal surface visibility range, one of the simplest measures of local atmospheric pollution, is critical for aviation, surface transport besides long-term impact on human health and climate. Long-term observations from multiple stations (including airports) across the world show statistically significant decline in visibility. We have studied climatology and trends of morning poor visibility days (PVD, visibility >4 km) and afternoon good visibility days (GVD, visibility >10 km) based on 279 surface meteorological stations well distributed over India for the period 1961–2008. During last 5 decades, all India averaged range of annual morning PVD has increased from 6.7 to 27.3 % days, while the range of afternoon GVD has decreased from 76.1 to 30.6 % days. Annually, the morning PVD increased significantly at 3.3 % days per decade, and the afternoon GVD declined significantly at −8.6 % days per decade. Seasonally, the highest increase in morning PVD has occurred in winter (+4.3 % days per decade), while post-monsoon has the highest decrease in afternoon GVD (−9.2 % days per decade). In spatial distribution, visibility has decreased nationwide especially over Indo-Gangetic (IG) plains, central, east and northeast India which is due to increased wintertime fog, water vapor and aerosol loading. The IG plains suffer from increased fog or smog and aerosol loading during wintertime. Long-term visibility impairment over India is visible through increasing morning PVD (decreasing GVD) and decreasing afternoon GVD (increasing PVD) which are spatially well correlated with increasing relative humidity and decreasing wind speed (seasonal). Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Visibility; Relative humidity; Wind speed; Trend; Correlation; Aerosols (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0666-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:68:y:2013:i:2:p:929-954
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0666-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().