EconPapers    
Economics at your fingertips  
 

Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan using WRF-ARW model

M. Ahasan () and A. Khan

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 69, issue 1, 363 pages

Abstract: Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan has been carried out using the Weather Research and Forecasting (WRF) model. This extraordinary rainfall event was localized over north-west Pakistan and recorded 274 mm of rainfall at Peshawar (34.02°N, 71.58°E), within a span of 24 h on that eventful day where monthly July normal rainfall is only 46.1 mm. The WRF model was run with the triple-nested domains of 27, 9, and 3 km horizontal resolution using Kain–Fritsch cumulus parameterization scheme having YSU planetary boundary layer. The model performance was evaluated by examining the different simulated parameters. The model-derived rainfall was compared with Pakistan Meteorological Department–observed rainfall. The model suggested that this flood producing heavy rainfall event over north-west region of Pakistan might be the result of an interaction of active monsoon flow with upper air westerly trough (mid-latitude). The north-west Pakistan was the meeting point of the southeasterly flow from the Bay of Bengal following monsoon trough and southwesterly flow from the Arabian Sea which helped to transport high magnitude of moisture. The vertical profile of the humidity showed that moisture content was reached up to upper troposphere during their mature stage (monsoon system usually did not extent up to that level) like a narrow vertical column where high amounts of rainfall were recorded. The other favourable conditions were strong vertical wind shear, low-level convergence and upper level divergence, and strong vorticity field which demarked the area of heavy rainfall. The WRF model might be able to simulate the flood producing rainfall event over north-west Pakistan and associated dynamical features reasonably well, though there were some spatial and temporal biases in the simulated rainfall pattern. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Mesoscale model; Cumulus scheme; Westerly trough; Summer monsoon; High resolution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0719-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:69:y:2013:i:1:p:351-363

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0719-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:351-363