Numerical simulation of dynamic mechanisms of the 2008 Wenchuan Ms8.0 earthquake: implications for earthquake prediction
Shoubiao Zhu ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 69, issue 2, 1279 pages
Abstract:
The sudden and unexpected Wenchuan earthquake (Ms = 8.0) occurred on the Longmen Shan Fault, causing a large number of casualties and huge property loss. Almost no definite precursors were reported prior to this event by Chinese scientists, who made a first successful prediction of the 1975 Haicheng earthquake (M = 7.3) in China. Does the unsuccessful prediction of the Wenchuan earthquake mean earthquake prediction is inherently impossible? In order to answer this question, the paper simulated inter- and co-seismic deformation, and recurrence of strong earthquakes associated with the Longmen Shan listric thrust fault by means of viscoelastic finite element method. The modeling results show that the computed interseismic strain accumulation in the lower crust beneath the Eastern Tibet is much faster than that in the other regions. In particular, the elastic strain energy density rate accumulates very rapid in and around the Longmen Shan fault in the depth above ~25 km that may explain why the great Wenchuan earthquake occurs in the region of such a slow surface deformation rate. The modeled coseismic displacements around the fault are consistent with surface rupture, aftershock distribution, and GPS measurement. Also, the model displays the slip history on the Longmen Shan fault, implying that the average earthquake recurrence interval on the Longmen Shan fault is very long, 3,300 years, which is in good agreement with the observed by paleoseismological investigations and estimates by other methods. Moreover, the model results indicate that the future earthquake could be evaluated based on numerical computation, rather than on precursors or on statistics. Numerical earthquake prediction (NEP) seems to be a promising avenue to a successful prediction, which will play an important part in natural hazard mitigation. NEP is difficult but possible, which needs well supporting. Copyright Springer Science+Business Media Dordrecht 2013
Keywords: Dynamical mechanisms; Longmen Shan fault; Finite element method; Inter- and coseismic deformation; Numerical earthquake prediction; Wenchuan earthquake (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0629-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:69:y:2013:i:2:p:1261-1279
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0629-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().