EconPapers    
Economics at your fingertips  
 

Estimation of earthquake casualties using high-resolution remote sensing: a case study of Dujiangyan city in the May 2008 Wenchuan earthquake

Tienan Feng (), Zhonghua Hong, Hengjing Wu, Qiushi Fu, Chaoxin Wang, Chenghua Jiang () and Xiaohua Tong ()

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2013, vol. 69, issue 3, 1577-1595

Abstract: From a disaster relief perspective, an immediate and efficient rescue operation after an earthquake can greatly increase the number of survivors. An effective rescue operation depends on two key elements: localisation of the affected areas and estimation of the number of casualties in these areas. Many more studies have been conducted on the localisation of affected areas than on casualty estimation. Consequently, this study develops a model for rapidly estimating the number of casualties using satellite remote sensing (SRS). The model is based on the attributes of damaged buildings, as these buildings cause the greatest harm to inhabitants and they can be detected by SRS. The model uses the damage index (DI) of buildings computed by a numerical damage model derived from SRS images to assess the extent of damage. The DI is then combined with the building’s materials and structure index, which is calculated using information from the local geographic information system, to compute the joint casualty index (JCI). Finally, the number of casualties is estimated by the product of the JCI multiplied by the number of people inside the damaged buildings at the time of the earthquake. The model is then applied to three towns in Dujiangyan City, as these were the areas that most severely affected by the Wenchuan earthquake. Preliminary results showed that there was little difference between the actual and estimated number of casualties. It is recommended that more casualty data should be included in the model to improve the accuracy of estimation. Copyright Springer Science+Business Media Dordrecht 2013

Keywords: Earthquake rescue; Remote sensing; Geographic information system; Casualty estimation; Wenchuan earthquake (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0764-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:69:y:2013:i:3:p:1577-1595

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0764-1

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:69:y:2013:i:3:p:1577-1595