EconPapers    
Economics at your fingertips  
 

Multi-Physics ensemble prediction of tropical cyclone movement over Bay of Bengal

Dodla Rao () and Desamsetti Srinivas

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 70, issue 1, 883-902

Abstract: Ensemble prediction methodology based on variations in physical process parameterizations in tropical cyclone track prediction has been assessed. Advanced Research Weather Research and Forecasting model with 30-km resolution was used to make 5-day simulation of the movement of Orissa super cyclone (1999), one of the most intense tropical cyclones over the North Indian Ocean. Altogether 36 ensemble members with all possible combinations of three cumulus convection, two planetary boundary layer and six cloud microphysics parameterization schemes were produced. A comparison of individual members indicated that Kain–Fritsch cumulus convection scheme, Mellor–Yamada–Janjic planetary boundary layer scheme and Purdue Lin cloud microphysics scheme showed better performance. The best possible ensemble formulation is identified based on SPREAD and root mean square error (RMSE). While the individual members had track errors ranging from 96–240 km at 24 h to 50–803 km at 120 h, most of the ensemble predictions show significant betterment with mean errors less than 130 km up to 120 h. The convection ensembles had large spread of the cluster, and boundary layer ensembles had significant error disparity, indicating their important roles in the movement of tropical cyclones. Six-member ensemble predictions with cloud microphysics schemes of LIN, WSM5, and WSM6 produce the best predictions with least of RMSE, and large SPREAD indicates the need for inclusion of all possible hydrometeors in the simulation and that six-member ensemble is sufficient to produce the best ensemble prediction of tropical cyclone tracks over Bay of Bengal. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Numerical prediction; Tropical cyclones; Ensemble method; ARW model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0852-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:70:y:2014:i:1:p:883-902

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0852-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:883-902