Leaking behavior of shield tunnels under the Huangpu River of Shanghai with induced hazards
Huai-Na Wu (),
Run-Qiu Huang (),
Wen-Juan Sun (),
Shui-Long Shen (),
Ye-Shuang Xu (),
Yan-Bin Liu () and
Shou-Ji Du ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 70, issue 2, 1115-1132
Abstract:
The Quaternary deposits in Shanghai primarily consists of a phreatic aquifer group (Aq0) and five artesian aquifers (AqI–AqV) that are separated by six aquitards (AdI–AdVI). In the basin of the Huangpu River, the first artesian aquifer (AqI) is connected to the second artesian aquifer (AqII), forming a 50-m-thick artesian aquifer with a very high groundwater level. The highway tunnels under the Huangpu River of Shanghai are constructed at a maximum depth up to 45 m, within the artesian aquifer. These tunnels are lined with precast reinforced concrete segments without a second lining. Under high water pressure, it is difficult for the single shell linings to achieve water tightness. Different degrees of groundwater leakage have been observed in road tunnels under the Huangpu River. The tunnels constructed before the 1990s have had very serious groundwater leakage (e.g., >1 L/m 2 /day), and the recently constructed tunnels have leaked less than 0.1 L/m 2 /day. The factors influencing groundwater leakage include depth below groundwater level, differential settlement of the tunnel, and applied waterproof technologies. The increase in depth leads to a significant increase in groundwater leakage. The differential settlement causes gaps to open and offset between segments, as well as cracking of segments, which can also induce groundwater leakage. According to the analysis of recorded data, the number of leaking points tends to increase with the curvature of the settlement curve. In addition, inappropriate waterproofing materials and poor waterproofing design will also lead to groundwater leakage. Groundwater leakage causes deterioration of the structure, aging of the installations in the tunnels (e.g., facilities and pavements), as well as discomfort for users of the tunnels and adverse environmental impacts. Furthermore, groundwater leakage also causes structural deformation of the tunnel itself, leading to further leakage and hazards. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Tunnel; Aquifer; Groundwater leakage; Hazard (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0863-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:70:y:2014:i:2:p:1115-1132
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0863-z
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().