Impact of variational assimilation technique on simulation of a heavy rainfall event over Pune, India
V. Yesubabu (),
Sahidul Islam,
D. Sikka,
Akshara Kaginalkar,
Sagar Kashid and
A. Srivastava
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 71, issue 1, 639-658
Abstract:
Prediction of heavy rainfall events due to severe convective storms in terms of their spatial and temporal scales is a challenging task for an operational forecaster. The present study is about a record-breaking heavy rainfall event observed in Pune (18°31′N, 73°55′E) on October 4, 2010. The day witnessed highest 24-h accumulated precipitation of 181.3 mm and caused flash floods in the city. The WRF model-based real-time weather system, operating daily at Centre for Development of Advanced Computing using PARAM Yuva supercomputer showed the signature of this convective event 4-h before, but failed to capture the actual peak rainfall and its location with reference to the city’s observational network. To investigate further, five numerical experiments were conducted to check the impact of assimilation of observations in the WRF model forecast. First, a control experiment was conducted with initialization using National Centre for Environmental Prediction (NCEP)’s Global Forecast System 0.5° data, while surface observational data from NCEP Prepbufr system were assimilated in the second experiment (VARSFC). In the third experiment (VARAMV), NCEP Prepbufr atmospheric motion vectors were assimilated. Fourth experiment (VARPRO) was assimilated with conventional soundings data, and all the available NCEP Prepbufr observations were assimilated in the fifth experiment (VARALL). Model runs were compared with observations from automated weather stations (AWS), synoptic charts of Indian Meteorological Department (IMD). Comparison of 24-h accumulated rainfall with IMD AWS 24-h gridded data showed that the fifth experiment (VARALL) produced better picture of heavy rainfall, maximum up to 251 mm/day toward the southern side, 31 km away from Pune’s IMD observatory. It was noticed that the effect of soundings observations experiment (VARPRO) caused heavy precipitation of 210 mm toward the southern side 49 km away from Pune. The wind analysis at 850 and 200 hPa indicated that the surface and atmospheric motion vector observations (VARAMV) helped in shifting its peak rainfall toward Pune, IMD observatory by 18 km, though VARALL over-predicted rainfall by 60 mm than the observed. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: WRF model; Data assimilation; Heavy rainfall; Convective storm (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0933-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:71:y:2014:i:1:p:639-658
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0933-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().