New grey prediction model and its application in forecasting land subsidence in coal mine
Huafeng Xu (),
Bin Liu () and
Zhigeng Fang ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 71, issue 2, 1194 pages
Abstract:
Mining subsidence destroys environment seriously and is difficult to forecast because the parameters in prediction model are difficult to obtain. As there are many uncertainties in mining subsidence, we forecast it by grey prediction model. Traditional GM (1,1) model predict for a time series. In this paper, the panel data are studied and are viewed as a sequence in which elements are matrix based on cross-sectional data, and the mean sequence of row vector GM (1,1) model, mean sequence of column vector GM (1,1) model and the cell volume sequence GM (1,1) model are established, respectively. Combining these grey models, we build prediction model of cross-sectional data matrix sequence. Thus, the scope of grey prediction has been expanded, and grey forecasting theory has been enriched. Using the newly built predictive models, we study the land deformation due to mining of Pingdingshan coal mine in Henan Province. Practical verification and model accuracy test show that the grey model can make accurate predictions, with a good agreement between the predictive value and actual value. It can provide effective and accurate information and also can provide an important reference for the reclamation planning of surface environment. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Grey system theory; Prediction model; Matrix sequence; Land subsidence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0656-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:71:y:2014:i:2:p:1181-1194
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0656-4
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().