EconPapers    
Economics at your fingertips  
 

Failure risk assessment of interdependent infrastructures against earthquake, a Petri net approach: case study—power and water distribution networks

Babak Omidvar (), Mohammad Hojjati Malekshah and Hamed Omidvar

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 71, issue 3, 1993 pages

Abstract: Metropolitan areas consist of complicated systems of interconnected infrastructures that are highly interdependent. Disruption of one infrastructure may induce disruption in other interconnected ones. The results from analysis of one infrastructure as an independent system are not realistic without considering the behavior of other interconnected infrastructures. Consequently, the study of the interdependencies among critical infrastructures is important for addressing the cascading effects of a failed infrastructure on the entire network to properly model its performance and help the disaster management team in decision making. In this study, the extended Petri net and Markov chain have been used to demonstrate the power and water infrastructure interdependency with a case study of one of the municipal districts of metropolitan Tehran, the capital of Iran. In this research, three cases have been assessed quantitatively: (1) the intra-dependency effects of different components in each network, (2) the interdependency effects between the considered critical infrastructures and (3) the behavior of the water network considering intra- and interdependency, when the power network fails. The analyses show that considering the mentioned interdependencies has a major influence on their performance simulations and assessment of their exact vulnerability. It is concluded that the failure probability of the water network that is dependent on the failed power network is 1.66 of the independent water network in the studied region. Eventually, the results of the research could be used in design, restoration and disaster management planning for safety assessment of critical infrastructures. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Critical infrastructures interaction; Petri net; Markov chain; Water network; Power network; Network analysis; Tehran (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0990-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:71:y:2014:i:3:p:1971-1993

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0990-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:71:y:2014:i:3:p:1971-1993