Impact of climate change on hydrological conditions of Rhine and Upper Danube rivers based on the results of regional climate and hydrological models
Gabriella Szépszó (),
Imke Lingemann,
Bastian Klein and
Mária Kovács
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 72, issue 1, 262 pages
Abstract:
The main objective of the Effects of Climate Change On the Inland waterway Networks (ECCONET) EU FP7 project was to assess the effect of climate change on the inland waterway transport network with special emphasis on the Rhine and Upper Danube catchments. The assessment was based on consolidation and analysis of earlier and existing research work as well as application of existing climate change and hydrological modelling tools. A key premise at the planning stage of the project had been that all impact studies conducted within ECCONET should be comparable with each other. This can be guaranteed by the common meteorological and hydrological basis. The climate model simulations, which are the most physics- and process-oriented tools for projecting the future climate evolution, include several uncertainties. In addition, uncertainties exist in the hydrological model simulations. In ECCONET, an effort was made to quantify the uncertainty range by using “representative projections” that represent both the lower and upper signals of hydrological low-flow parameters for 2021–2050 over the Rhine catchment. Their evaluation indicated that the finally chosen two regional climate model simulations could be applied also for the Upper Danube catchments as representative projections. The raw climate model outputs have been corrected to the observation data set through application of the linear scaling and the delta-change method. The first impact studies carried out after validation of the hydrological models resulted in discharge scenarios used as input to the economic models in ECCONET. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Rhine; Danube; Low-flow; Regional climate model; Hydrology; ECCONET (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0987-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:72:y:2014:i:1:p:241-262
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0987-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().