Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions
Gaohui Wang (),
Sherong Zhang,
Chao Wang and
Mao Yu
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 72, issue 2, 674 pages
Abstract:
Ground motion records obtained in recent major strong earthquakes have provided evidence that ground motions recorded near the near-fault regions differ in many cases from those observed further away from the seismic source. As the forward directivity and fling effect characteristics of the near-fault ground motions, they have the potential to cause more considerable damage to structures during an earthquake. Therefore, understanding the influence of near-fault ground motions on the performance of structures is critical to mitigate damage and perform effective response. This paper presents results of a study aimed at evaluating the effects of near-fault and far-fault ground motions on seismic performance of concrete gravity dams including dam-reservoir-foundation interaction. Koyna gravity dam is selected as a numerical application. Four different near-fault ground motion records with an apparent velocity pulse are used in the analyses. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The seismic performance evaluation method based on the demand-capacity ratio, the cumulative overstress duration and the spatial extent of overstressed regions is presented. The concrete damaged plasticity model including the strain hardening or softening behavior is employed in nonlinear analyses. Nonlinear seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. The results obtained from the analyses show the effects of near-fault ground motions on seismic performance of concrete gravity dams and demonstrate the importance of considering the near-fault ground excitations. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Concrete gravity dams; Seismic performance; Near-fault ground motions; Demand-capacity ratio (DCR); Seismic damage; Concrete damaged plasticity (CDP) model; Dam-reservoir-foundation interaction (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-1028-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:72:y:2014:i:2:p:651-674
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-1028-9
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().