EconPapers    
Economics at your fingertips  
 

Spatial pattern of landslides in Swiss Rhone Valley

Marj Tonini (), Andrea Pedrazzini, Ivanna Penna and Michel Jaboyedoff

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 1, 97-110

Abstract: The present study analyses the spatial pattern of quaternary gravitational slope deformations (GSD) and historical/present-day instabilities (HPI) inventoried in the Swiss Rhone Valley. The main objective is to test if these events are clustered (spatial attraction) or randomly distributed (spatial independency). Moreover, analogies with the cluster behaviour of earthquakes inventoried in the same area were examined. The Ripley’s K-function was applied to measure and test for randomness. This indicator allows describing the spatial pattern of a point process at increasing distance values. To account for the non-constant intensity of the geological phenomena, a modification of the K-function for inhomogeneous point processes was adopted. The specific goal is to explore the spatial attraction (i.e. cluster behaviour) among landslide events and between gravitational slope deformations and earthquakes. To discover if the two classes of instabilities (GSD and HPI) are spatially independently distributed, the cross K-function was computed. The results show that all the geological events under study are spatially clustered at a well-defined distance range. GSD and HPI show a similar pattern distribution with clusters in the range 0.75–9 km. The cross K-function reveals an attraction between the two classes of instabilities in the range 0–4 km confirming that HPI are more prone to occur within large-scale slope deformations. The K-function computed for GSD and earthquakes indicates that both present a cluster tendency in the range 0–10 km, suggesting that earthquakes could represent a potential predisposing factor which could influence the GSD distribution. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Ripley’s K-function; Landslides; Cluster; Spatial pattern; Swiss Alps (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-012-0522-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:1:p:97-110

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-012-0522-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:73:y:2014:i:1:p:97-110