Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS
Biswajeet Pradhan (),
Mohammed Abokharima,
Mustafa Jebur and
Mahyat Tehrany
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 2, 1019-1042
Abstract:
Land subsidence is one of the frequent geological hazards worldwide. Urban areas and agricultural industries are the entities most affected by the consequences of land subsidence. The main objective of this study was to estimate the land subsidence (sinkhole) hazards at the Kinta Valley of Perak, Malaysia, using geographic information system and remote sensing techniques. To start, land subsidence locations were observed by surveying measurements using GPS and using the tabular data, which were produced as coordinates of each sinkhole incident. Various land subsidence conditioning factors were used such as altitude, slope, aspect, lithology, distance from the fault, distance from the river, normalized difference vegetation index, soil type, stream power index, topographic wetness index, and land use/cover. In this article, a data-driven technique of an evidential belief function (EBF), which is in the category of multivariate statistical analysis, was used to map the land subsidence-prone areas. The frequency ratio (FR) was performed as an efficient bivariate statistical analysis method in order compare it with the acquired results from the EBF analysis. The probability maps were acquired and the results of the analysis validated by the area under the (ROC) curve using the testing land subsidence locations. The results indicated that the FR model could produce a 71.16 % prediction rate, while the EBF showed better prediction accuracy with a rate of 73.63 %. Furthermore, the success rate was measured and accuracies of 75.30 and 79.45 % achieved for FR and EBF, respectively. These results can produce an understanding of the nature of land subsidence as well as promulgate public awareness of such geo-hazards to decrease human and economic losses. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Land subsidence; Frequency ratio model; Evidential belief function; Remote sensing; GIS; Kinta Valley; Malaysia (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1128-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:2:p:1019-1042
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1128-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().