Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model
Saji Mohandas () and
Raghavendra Ashrit
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 2, 213-235
Abstract:
This study presents an intercomparison of four cumulus parameterization schemes (CPS) in the prediction of three cases of tropical cyclones in the north Indian Ocean. The study makes use of the Weather Research and Forecasting model of Non-hydrostatic Mesoscale Model version with a horizontal resolution of 27 km. The four deep cumulus schemes studied are (a) modified Kain–Fritsch (KF), (b) Betts–Miller–Janjic, (c) Simplified Arakawa–Schubert and (d) Grell-Devenyi Ensemble (GD) schemes. Three cases chosen for the study are unique cases with entirely different characteristics, synoptic/convective conditions and with varying levels of performance of the driving global model forecasts. The objective of the current study is to report the relative performance of the CPSs rather than the accuracy of the forecasts, under different convective conditions as reflected in the initial and boundary conditions. The study shows that generally KF scheme produced near-realistic track, intensification and the associated rainfall patterns and GD performed worst in terms of convective organisation and the sustained intensity. The impact of cumulus parameterization schemes and its performance vary widely among the three cases studied. The standard verification scores and the contribution of grid-scale precipitation towards the total rainfall by the mesoscale model are also compared between the different cases as well as the different cumulus parameterization schemes. The performance evaluation of the tropical cyclone predictions by the mesoscale model is influenced by not only the model physics but also the convective conditions as input into the model . Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Cumulus parameterization; Tropical cyclones; Weather Research Forecasting model; Convective conditions (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0824-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:2:p:213-235
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-013-0824-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().