EconPapers    
Economics at your fingertips  
 

An extreme learning machine approach for slope stability evaluation and prediction

Zaobao Liu (), Jianfu Shao (), Weiya Xu, Hongjie Chen and Yu Zhang

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 2, 787-804

Abstract: This paper presents slope stability evaluation and prediction with the approach of a fast robust neural network named the extreme learning machine (ELM). The circular failure mechanism of a slope is formulated based on its material, geometrical and environmental parameters such as the unit weight, the cohesion, the internal friction angle, the slope inclination, slope height and the pore water ratio. The ELM is proposed to evaluate the stability of slopes subjected to potential circular failures by means of prediction of the factor of safety (FS). Substantial slope cases collected worldwide are utilized to illustrate and assess the capability and predictability of the ELM on slope stability analysis. Based on the mean absolute percentage errors and the correlation coefficients between the original and predicted FS values, comparisons are demonstrated between the ELM and the generalized regression neural network (GRNN) as well as the prediction models generated from the genetic algorithms. Moreover, sensitivity analysis of the slope parameters and the ELM model parameters is carried out based on the two utilized evaluation functions. The time expense of the ELM on slope stability analysis is also investigated. The results prove that the ELM is advantageous to the GRNN and the genetic algorithm based models in the analysis of slope stability. Hence, the ELM can be a promising technique for approaching the problems in geotechnical engineering. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Geotechnical engineering; Slope stability analysis; Stability prediction; Circular slip failure; Artificial intelligence; Extreme learning machine (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1106-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:2:p:787-804

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1106-7

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:787-804