Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures
V. Durai and
Rashmi Bhradwaj ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 3, 1229-1254
Abstract:
Statistical bias correction methods for numerical weather prediction (NWP) forecasts of maximum and minimum temperatures over India in the medium-range time scale (up to 5 days) are proposed in this study. The objective of bias correction is to minimize the systematic error of the next forecast using bias from past errors. The need for bias corrections arises from the many sources of systematic errors in NWP modeling systems. NWP models have shortcomings in the physical parameterization of weather events and have the inability to handle sub-grid phenomena successfully. The statistical algorithms used for minimizing the bias of the next forecast are running-mean (RM) bias correction, best easy systematic estimator, simple linear regression and the nearest neighborhood (NN) weighted mean, as they are suitable for small samples. Bias correction is done for four global NWP model maximum and minimum temperature forecasts. The magnitude of the bias at a grid point depends upon geographical location and season. Validation of the bias correction methodology is carried out using daily observed and bias-corrected model maximum and minimum temperature forecast over India during July–September 2011. The bias-corrected NWP model forecast generally outperforms direct model output (DMO). The spatial distribution of mean absolute error and root-mean squared error for bias-corrected forecast over India indicate that both the RM and NN methods produce the best skill among other bias correction methods. The inter-comparison reveals that statistical bias correction methods improve the DMO forecast in terms of accuracy in forecast and have the potential for operational applications. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Global model; Numerical weather prediction; Statistical bias correction; Maximum and minimum temperature forecast (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1136-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:3:p:1229-1254
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1136-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().