EconPapers    
Economics at your fingertips  
 

Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: model development

Ruirui Sun, Xiaoling Wang (), Zhengyin Zhou, Xuefei Ao, Xiaopei Sun and Mingrui Song

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 3, 1547-1568

Abstract: Dam-break floods have been of increasing concern to safety engineers and decision makers. The presence of complex terrain in inundation areas multiplies the simulation difficulty of flood routing. In previous studies, representing the flood routing parameters empirically does not reflect the characteristics of flood routing, which strongly influences the accurate assessment of the dam-break consequences. The basis for carrying out dangerous reservoir reinforcement is just engineering safety, without considering the actual situation of downstream areas. In this study, a comprehensive risk analysis of the dam-break flood was implemented based on the numerical simulation of flood routing. First, coupled with the volume of fluid method, a three-dimensional k–ɛ turbulence mathematical model was developed for flood routing in complex inundation areas. Then, based on the flow parameters obtained through computational fluid dynamics modeling, the attribute measure methodology was used for the evaluation of consequences combined with the calculation of the dam-break consequences (loss of life, economic loss, social and environmental influence). Furthermore, a methodology containing the combined weight method and the technique for order performance by similarity to ideal solution method was proposed for risk ranking of dangerous reservoirs due to its logical consideration of scalar values that simultaneously account for both the best and worst alternatives. Finally, a sensitivity analysis was performed to provide information about the stability of risk ranking. The aforementioned model and methodology are applied to a case involving five reservoirs in the Haihe River Basin in China for Part II of this study. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Dam-break flow; Comprehensive assessment of dam-break consequences; Risk ranking of dangerous reservoirs; Three-dimensional numerical simulation; TOPSIS model; Complex inundation areas (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1154-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:3:p:1547-1568

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1154-z

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:73:y:2014:i:3:p:1547-1568