EconPapers    
Economics at your fingertips  
 

Modeling of strong motion generation area of the Uttarkashi earthquake using modified semiempirical approach

Sandeep (), A. Joshi (), Kamal (), Parveen Kumar and Pushpa Kumari

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 73, issue 3, 2066 pages

Abstract: The semiempirical approach based on envelope summation method given by Midorikawa (Tectonophysics 218:287–295, 1993 ) has been modified in this paper for modeling of strong motion generation areas (SMGAs). Horizontal components of strong ground motion have been simulated using modifications in the semiempirical approach given by Joshi et al. (Nat Hazard 71:587–609, 2014 ). Various modifications in the technique account for finite rupture source, layering of earth, componentwise division of energy and frequency-dependent radiation pattern. In this paper, SMGAs of the Uttarkashi earthquake have been modeled. Two different isolated wave packets in the recorded accelerogram have been identified from recorded ground motion, which accounts for two different SMGAs in the entire rupture plane. The approximate locations of SMGAs within the rupture plane were estimated using spatio-temporal variation of 77 aftershocks. Source parameters of each SMGA were calculated from theoretical and observed source displacement spectra computed from two different wave packets in the record. The final model of rupture plane responsible for the Uttarkashi earthquake consists of two SMGAs, and the same has been used to simulate horizontal components of acceleration records at different station using modified semiempirical technique. Comparison of the observed and simulated acceleration records in terms of root mean square error confirms the suitability of the final source model for the Uttarkashi earthquake. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Strong ground motion; Semiempirical; Strong motion generation area; 1991 Uttarkashi earthquake; Frequency-dependent radiation pattern (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1179-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:73:y:2014:i:3:p:2041-2066

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1179-3

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:73:y:2014:i:3:p:2041-2066