Flood forecasts based on multi-model ensemble precipitation forecasting using a coupled atmospheric-hydrological modeling system
Juan Wu,
Guihua Lu and
Zhiyong Wu ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 2, 325-340
Abstract:
The recent improvement of numerical weather prediction (NWP) models has a strong potential for extending the lead time of precipitation and subsequent flooding. However, uncertainties inherent in precipitation outputs from NWP models are propagated into hydrological forecasts and can also be magnified by the scaling process, contributing considerable uncertainties to flood forecasts. In order to address uncertainties in flood forecasting based on single-model precipitation forecasting, a coupled atmospheric-hydrological modeling system based on multi-model ensemble precipitation forecasting is implemented in a configuration for two episodes of intense precipitation affecting the Wangjiaba sub-region in Huaihe River Basin, China. The present study aimed at comparing high-resolution limited-area meteorological model Canadian regional mesoscale compressible community model (MC2) with the multiple linear regression integrated forecast (MLRF), covering short and medium range. The former is a single-model approach; while the latter one is based on NWP models [(MC2, global environmental multiscale model (GEM), T213L31 global spectral model (T213)] integrating by a multiple linear regression method. Both MC2 and MLRF are coupled with Chinese National Flood Forecasting System (NFFS), MC2-NFFS and MLRF-NFFS, to simulate the discharge of the Wangjiaba sub-basin. The evaluation of the flood forecasts is performed both from a meteorological perspective and in terms of discharge prediction. The encouraging results obtained in this study demonstrate that the coupled system based on multi-model ensemble precipitation forecasting has a promising potential of increasing discharge accuracy and modeling stability in terms of precipitation amount and timing, along with reducing uncertainties in flood forecasts and models. Moreover, the precipitation distribution of MC2 is more problematic in finer temporal and spatial scales, even for the high resolution simulation, which requests further research on storm-scale data assimilation, sub-grid-scale parameterization of clouds and other small-scale atmospheric dynamics. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Coupled atmospheric-hydrological modeling; National Flood Forecasting System (NFFS); Flood forecast; Multi-model ensemble precipitation forecasting (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1204-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:2:p:325-340
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1204-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().