EconPapers    
Economics at your fingertips  
 

Estimating magnitudes of prehistoric earthquakes and seismic capability of fault from landslide data in Noor valley (central Alborz, Iran)

Zeynab Asadi () and Mehdi Zare ()

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 2, 445-461

Abstract: Detecting the paleoseismological specifications as well as seismic capability of faults has specific importance in estimating the earthquake hazard in any region. The geomorphic indices are used as indirect procedures in the mountainous area. They are appropriate and applicable methods in recognizing the specifications of active tectonics and evaluating fault seismicity in the mountainous areas. In this regard, giant landslides can be pointed out as proper indices. These landslides are usually related to tectonics and triggered by earthquakes in many cases. In this research, giant landslides existed in Noor valley (central Alborz) have been considered as geomorphological indices for recognizing the seismicity of the region and the seismic capability of its faults. There are four giant landslides in this region (Baladeh, Razan, Vakamar, and Iva) used for the mentioned purpose. No historical earthquake has been reported around Noor valley. However, the existence of giant and old landslides, related to earthquake, indicates the occurrence of numerous prehistoric earthquakes. In this research, three different age classes have been determined (Late Holocene, Early Holocene, and Late Pleistocene) for landslides. By the way, the possibility of identifying multiple earthquakes is provided in this area. The magnitudes of earthquakes are estimated as 7.7 ± 0.49 to 7.9 ± 0.49 based on their relations with maximum volume of displaced material. Regarding the distribution of landslides and other evidences, the eastern segment of Baladeh fault has probably been the main cause of the earthquakes. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Giant landslides; Earthquake-triggered landslides; Prehistoric earthquakes; Magnitude; Noor valley; Iran (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1186-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:2:p:445-461

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1186-4

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:445-461