Estimating landslide susceptibility through a artificial neural network classifier
Paraskevas Tsangaratos () and
Andreas Benardos ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 3, 1489-1516
Abstract:
A landslide susceptibility analysis is performed through an artificial neural network (ANN) algorithm, in order to model the nonlinear relationship between landslide manifestation and geological and geomorphological parameters. The proposed methodology can be divided into two distinctive phases. In the first phase, the methodology introduces a specific distance metric, the Mahalanobis distance metric, to improve the selection of non-landslide records that “enriches” the training database and provides the model with the necessary data during the training phase. In the second phase, the methodology develops a ANN model that was capable of minimizing the effect of over-fitting by monitoring in parallel the testing data during the training phase and terminating the process of learning when a certain acceptable criteria are achieved. The model was capable in identifying unstable areas, expressed by a landslide susceptibility index. The proposed methodology has been applied in the County of Xanthi, in the northern part of Greece, an area where a well-established landslide database existed. The landslide-related parameters that had been taken in account in the analysis were the following: lithology, distance from geological boundaries, distance from tectonic features, elevation, slope inclination, slope orientation, distance from hydrographic network and distance from road network. These parameters have been normalized and reclassified and used as input variables, while the description of a given area as landslide/non-landslide was assumed to be the output variable. The final outcome of the model was a geospatial product, which expressed the landslide susceptibility index and when compared with an up-to-date landslide inventory database showed satisfactory results. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Landslide susceptibility; Mahalanobis metric distance; Artificial neural network (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1245-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:3:p:1489-1516
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1245-x
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().