Laboratory experiments of tsunami run-up and withdrawal in patchy coastal forest on a steep beach
Jennifer Irish (),
Robert Weiss (),
Yongqian Yang,
Youn Song,
Amir Zainali and
Roberto Marivela-Colmenarejo
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 3, 1933-1949
Abstract:
Laboratory experiments were carried out to study tsunami flow dynamics in the presence of patchy macro-roughness, representing coastal forest, on a 1:10 steep beach. The experimental setup included four cross-shore rows of roughness patches affixed to the dry beach in a staggered array, such that 12 % of the staggered array region had higher roughness. The flow field during run-up and withdrawal was quantified using point measurements of velocity and flow depth at 20 locations, while high-resolution video was used to track bore position during run-up. Data analysis revealed that while inundated area was marginally impacted when patchy roughness was present, flow depths and flow force were, respectively, increased by more than 40 and 30 % in some areas within the patch array; a decrease in flow force was also observed in some areas. Alongshore variation in flow depth, induced by the roughness patches, was most pronounced during withdrawal. These findings suggest that patchy macro-roughness, like that created by coastal forest, will simultaneously lead to increased protection in some areas and decreased protection in others. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Tsunamis; Run-up; Vegetation; Coastal forest; Experiments (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1286-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:3:p:1933-1949
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1286-1
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().