EconPapers    
Economics at your fingertips  
 

A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster

L. Lombardo (), M. Cama, M. Maerker and E. Rotigliano

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 3, 1989 pages

Abstract: A model building strategy is tested to assess the susceptibility for extreme climatic events driven shallow landslides. In fact, extreme climatic inputs such as storms typically are very local phenomena in the Mediterranean areas, so that with the exception of recently stricken areas, the landslide inventories which are required to train any stochastic model are actually unavailable. A solution is here proposed, consisting in training a susceptibility model in a source catchment, which was implemented by applying the binary logistic regression technique, and exporting its predicting function (selected predictors regressed coefficients) in a target catchment to predict its landslide distribution. To test the method, we exploit the disaster that occurred in the Messina area (southern Italy) on 1 October 2009 where, following a 250-mm/8-h storm, approximately two thousand debris flow/debris avalanches landslides in an area of 21 km 2 triggered, killing 37 people and injuring more than 100, and causing 0.5 M € worth of structural damage. The debris flows and debris avalanches phenomena involved the thin weathered mantle of the Varisican low to high-grade metamorphic rocks that outcrop in the eastern slopes of the Peloritani Mounts. Two 10-km 2 -wide stream catchments, which are located inside the storm core area, were exploited: susceptibility models trained in the Briga catchment were tested when exported to predict the landslides distribution in the Giampilieri catchment. The prediction performance (based on goodness of fit, prediction skill, accuracy and precision assessment) of the exported model was then compared with that of a model prepared in the Giampilieri catchment exploiting its landslide inventory. The results demonstrate that the landslide scenario observed in the Giampilieri catchment can be predicted with the same high performance without knowing its landslide distribution: we obtained, in fact, a very poor decrease in predictive performance when comparing the exported model to the native random partition-based model. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Landslide susceptibility assessment; Forward logistic regression; Model building strategy; Extreme climatic events (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1285-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:3:p:1951-1989

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1285-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:1951-1989