A new approach for analyzing the velocity distribution of debris flows at typical cross-sections
Zheng Han (),
Guangqi Chen,
Yange Li (),
Linrong Xu,
Lu Zheng and
Yingbing Zhang
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 3, 2053-2070
Abstract:
The asymmetrical distribution of debris-flow velocity in a cross-section has long been observed and is currently regarded as one of the most essential issues in debris-flow research. Due to a lack of quantitative models for the velocity distributions of debris flows, most studies consider only the mean velocity. However, to optimize countermeasure structures, to estimate the erosion rate, or to evaluate the constitutive equations for shear behavior, it is beneficial to know the velocity profile in a cross-section. In this paper, a generalized model of typical channel geometries (e.g., rectangular, trapezoid, or V-shape) is proposed. A description of the velocity distribution that optimizes the Manning–Strickler velocity equation for transverse distribution and Egashira’s velocity equation for vertical distribution is presented; thus, the debris-flow velocity at any point in the cross-section can be calculated and the distribution profile therefore obtained. A well-documented debris-flow reference case and the Jiasikou debris flow in the high-seismic-intensity zone of the Wenchuan earthquake are selected as case studies to demonstrate the model. Analyses of both cases confirm the asymmetrical distribution of debris-flow velocity in cross-section, as originally expected. This shows that the velocity at the top surface in the middle of the channel is much larger than that at each sidewall and than the mean value calculated by former equations. The obtained velocity distribution profile is a better approximation of the observed field profiles. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Debris flow; Generalized model of cross-section; Velocity; Distribution profile (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1276-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:3:p:2053-2070
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1276-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().