EconPapers    
Economics at your fingertips  
 

Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal

V. Yesubabu, C. Srinivas (), S. Ramakrishna and K. Hari Prasad

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 3, 2109-2128

Abstract: In this study, the impact of four-dimensional data assimilation (FDDA) analysis nudging is examined on the prediction of tropical cyclones (TC) in the Bay of Bengal to determine the optimum period and timescale of nudging. Six TCs (SIDR: November 13–16, 2007; NARGIS: April 29–May 02, 2008; NISHA: November 25–28, 2008; AILA: May 23–26, 2009; LAILA: May 18–21, 2010; JAL: November 04–07, 2010) were simulated with a doubly nested Weather Research and Forecasting (WRF) model with a horizontal resolution of 9 km in the inner domain. In the control run for each cyclone, the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analysis and forecasts at 0.5° resolution are used for initial and boundary conditions. In the FDDA experiments available surface, upper air observations obtained from NCEP Atmospheric Data Project (ADP) data sets were used for assimilation after merging with the first guess through objective analysis procedure. Analysis nudging experiments with different nudging periods (6, 12, 18, and 24 h) indicated a period of 18 or 24 h of nudging during the pre-forecast stage provides maximum impact on simulations in terms of minimum track and intensity forecasts. To determine the optimum timescale of nudging, two cyclone cases (NARGIS: April 28–May 02, 2008; NISHA: November 25–28, 2008) were simulated varying the inverse timescales as 1.0e−4 to 5.0e−4 s −1 in steps of 1.0e−4 s −1 . A positive impact of assimilation is found on the simulated characteristics with a nudging coefficient of either 3.0e−4 or 4.0e−4 s −1 which corresponds to a timescale of about 1 h for nudging dynamic (u,v) and thermodynamical (t,q) fields. Copyright Springer Science+Business Media Dordrecht 2014

Keywords: Tropical cyclones; WRF-ARW; FDDA nudging; Period; Timescale (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1293-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:3:p:2109-2128

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1293-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:2109-2128