A Bayesian vulnerability assessment tool for drinking water mains under extreme events
Alessandro Pagano (),
Raffaele Giordano (),
Ivan Portoghese,
Umberto Fratino () and
Michele Vurro
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, vol. 74, issue 3, 2193-2227
Abstract:
Drinking water security is a life safety issue as an adequate supply of safe water is essential for economic, social and sanitary reasons. Damage to any element of a water system, as well as corruption of resource quality, may have significant effects on the population it serves and on all other dependent resources and activities. As well as an analysis of the reliability of water distribution systems in ordinary conditions, it is also crucial to assess system vulnerability in the event of natural disasters and of malicious or accidental anthropogenic acts. The present work summarizes the initial results of research activities that are underway with the intention of developing a vulnerability assessment methodology for drinking water infrastructures subject to hazardous events. The main aim of the work was therefore to provide decision makers with an effective operational tool which could support them mainly to increase risk awareness and preparedness and, possibly, to ease emergency management. The proposed tool is based on Bayesian Belief Networks (BBN), a probabilistic methodology which has demonstrated outstanding potential to integrate a range of sources of knowledge, a great flexibility and the ability to handle in a mathematically sound way uncertainty due to data scarcity and/or limited knowledge of the system to be managed. The tool was implemented to analyze the vulnerability of two of the most important water supply systems in the Apulia region (southern Italy) which have been damaged in the past by natural hazards. As well as being useful for testing and improving the predictive capabilities of the methodology and for possibly modifying its structure and features, the case studies have also helped to underline its strengths and weaknesses. Particularly, the experiences carried out demonstrated how the use of BBN was consistent with the lack of data reliability, quality and accessibility which are typical of complex infrastructures, such as the water distribution networks. The potential applications and future developments of the proposed tool have been also discussed accordingly. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Bayesian Belief Networks; Drinking water supply; Vulnerability assessment; Decision Support System; Physical hazards (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1302-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:74:y:2014:i:3:p:2193-2227
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1302-5
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().