SPH modeling of tidal bore scenarios
Huaxing Liu (),
Jing Li (),
Songdong Shao () and
Soon Tan ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 75, issue 2, 1247-1270
Abstract:
The paper presented a smoothed particle hydrodynamics (SPH) method to study the three-dimensional (3D) tidal bore scenarios. The SPH method is a mesh-free particle modeling technique that can track the large deformation of free surfaces in a straightforward and accurate way. Two benchmark cases of the tidal bore propagation were computed and compared with the experimental results. The first one is related to the undular and breaking bores in a regular open channel, and the second one considers the undular bore passing through the contraction of bridge piers. Physical laboratory experiments have also been carried out to validate the numerical investigations. The comparisons of both the free surface profile and velocity field demonstrated that the SPH technique could provide a very promising tool to simulate tidal bore phenomena in engineering practice. The work is the first to systematically explore the potentials of mesh-free SPH modeling approach in predicting the tidal bore features under 3D flow conditions. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Tidal bore; SPH; Domain separation; Undular bore; Breaking bore; Bridge pier contraction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1374-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:75:y:2015:i:2:p:1247-1270
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1374-2
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().