EconPapers    
Economics at your fingertips  
 

A scenario-based risk framework for determining consequences of different failure modes of earth dams

Paul Cleary, Mahesh Prakash (), Stuart Mead, Vincent Lemiale, Geoff Robinson, Fanghong Ye, Sida Ouyang and Xinming Tang

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 75, issue 2, 1489-1530

Abstract: Failure modes for earth dams are extensively reviewed and analysed using a three-pronged approach including a literature review, physical observations of a representative earth dam site and finite element structural analysis of the dam wall. Several failure scenarios are used for predicting consequences in terms of downstream inundation and damage. The fluid flow component is performed using the mesh-free smoothed particle hydrodynamics method. For a representative earthen dam, piping and landslip are identified as key failure modes based on a combination of finite element analysis, theory and physical observations. Inundation behaviour is very different for the two failure modes. The landslip failure is the most critical one for the dam studied with flood water breaking the river bank and affecting surrounding property and farmland. For the piping failures, water flow from the initial pipes formed for significant periods before they collapse, but the flow rates are small compared with that of the much larger landslip mode. After failure, fragments of the collapsing wall block the breach and can considerably restrict the flood discharge. In some cases, the water pressure is able to push the obstructing material downstream and some minor flooding occurs, but in others cases the breach can remain blocked with little flooding occurring. A prototype risk framework is developed using the small database of the pre-computed flooding scenarios and key variables that affect inundation such as water level in the reservoir. This can be used to estimate inundation maps for as yet non-computed scenarios through interpolation and superposition techniques. The implementation of the risk framework is demonstrated by the estimation of inundation maps for two in-between non-computed reservoir levels. Inundation due to multiple breaches is also estimated by superposition of three single-breach scenarios. Results are compared against the simulated multiple breach. A preliminary implementation of this risk framework into a geographic information system is also described. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: SPH; Dam failure; Flood inundation; Failure modes; Risk framework; Earthen dams (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1379-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:75:y:2015:i:2:p:1489-1530

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1379-x

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:75:y:2015:i:2:p:1489-1530