EconPapers    
Economics at your fingertips  
 

Damage evolution of tunnel portal during the longitudinal propagation of Rayleigh waves

Dong Wu (), Bo Gao, Yusheng Shen, Jiamei Zhou and Guihong Chen

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 75, issue 3, 2519-2543

Abstract: Rayleigh waves significantly compromise the safety of tunnel portals. This paper establishes a three-dimensional numerical model, with a plastic-damage model for the concrete lining structure, to analyze the damage evolution of the tunnel portal during the longitudinal propagation of Rayleigh waves. To generate the wave field, a Rayleigh wave input method based on viscous-spring artificial boundary is developed. The submodeling technique is employed to overcome difficulties introduced by contradictions between element size, model scale and affordable computational cost. The simulation results, including the deformation of pavement at the entrance and the crack pattern of the tunnel lining, correspond well with the field observation of the Longxi Tunnel during the Wenchuan Earthquake. This paper proposes that the opening width of predominant circumferential cracks and a dimensionless damage index based on the internal damage variable can be used to quantitatively estimate the damage extent of the lining structure. The result of damage assessment shows that all damage is limited within a certain scope of the tunnel portal and that the extent of each crack decreases with its increasing distance from the entrance. The extent of damage may also be induced through earthquake loading with a relatively lower amplitude. Therefore, the cyclic and accumulative effect of successive earthquake loading over time, rather than simply, the effect of loading with a maximum amplitude, can determine the final damage state of lining structure. Although incapable of preventing the appearance of hairline cracks, the strengthening effect of reinforcement remarkably reduces the maximum width of crack openings and the overall damage extent of the lining structure. Moreover, the presence of reinforcing steels prevents micro-cracks from expanding to wider crack, which is essential to keep the tunnel lining waterproof and mechanically stabilized. The simulation methodology introduced in this paper could also potentially reliably predict the damage process of the tunnel lining and the extent of damage under the effect of complicated earthquake loading, aside from the Rayleigh wave. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Tunnel portal; Rayleigh wave; Damage evolution; Tensile crack; Damage index (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1447-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:75:y:2015:i:3:p:2519-2543

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1447-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2519-2543