EconPapers    
Economics at your fingertips  
 

An investigation on the predictability of thunderstorms over Kolkata, India using fuzzy inference system and graph connectivity

Sutapa Chaudhuri (), Debanjana Das and Anirban Middey

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 76, issue 1, 63-81

Abstract: The purpose of this study was to develop a computing system (CS) with fuzzy membership and graph connectivity approach to estimate the predictability of thunderstorms during the pre-monsoon season (April–May) over Kolkata (22°32′N, 88°20′E), India. The stability indices are taken to form the inputs of the CS. Ten important stability indices are selected to prepare the input of the fuzzy set. The data analysis during the period from 1997 to 2006 led to identify the ranges of the stability indices through membership function for preparing the fuzzy inputs. The possibility of thunderstorms with the given ranges of the stability indices is validated with the bipartite graph connectivity method. The bipartite graphs are prepared with two sets of vertices, one set for three membership functions (strong, moderate and weak) with the stability indices and the other set includes the three membership functions for the probability of thunderstorms (high, medium and low). The percentages of degree of vertex (ΔG) are computed from a sample set of bipartite graph on thunderstorm days and are assigned as the measure of the likelihood of thunderstorms. The results obtained from graph connectivity analysis are found to be in conformity with the output of fuzzy interface system (FIS). The result reveals that the skill of graph connectivity is better and supports the FIS in estimating the predictability of thunderstorms over Kolkata during the pre-monsoon season. The result further reveals from the minimum degree of vertex connectivity that among the ten selected stability indices, only four indices: lifted index, bulk Richardson number, Boyden index and convective available potential energy, are most relevant for estimating the predictability of thunderstorms over Kolkata, India. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Stability index; Fuzzy interface system; Degree of vertex; Graph connectivity; Predictability; Thunderstorm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1477-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:76:y:2015:i:1:p:63-81

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1477-9

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:76:y:2015:i:1:p:63-81