EconPapers    
Economics at your fingertips  
 

A method to reveal climatic variables triggering slope failures at high elevation

Roberta Paranunzio (), Francesco Laio, Guido Nigrelli and Marta Chiarle

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 76, issue 2, 1039-1061

Abstract: The air temperature in the Alps has increased at a rate more than twice the global average in the last century, and a significant increase in the number of slope failures has also been documented, in particular in glacial and periglacial areas. Thus, the relationship between climatological forcing and processes of instability at high elevation is worth analyzing. We provide a simple, statistically based method aimed at identifying a relationship between climate factors and the triggering of geohazards. Our main idea is to compare the meteorological conditions at the time when the instability occurred with the typical conditions in the same place. Carrying out a straightforward analysis based on the use of the empirical distribution function, we are able to determine whether any of the meteorological variables had nonstandard values in the lead-up to the slope failure event, and thus to identify the variables that are likely to have acted as triggering factors for the slope failure. The method has been tested on five events in the glacial and periglacial areas of the Piedmont Alps (Northwestern Italy) occurring between 1989 and 2008. Out of these five case studies, our research shows that four can be attributed to climatic anomalies (rise of temperature and/or heavy precipitation). The results of this study may contribute to developing knowledge about the relationships between climatic variables and slope failures at high elevations, providing interesting insights into the expected impact of ongoing global warming on geohazards. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Alps; Precipitation; Triggering; High elevation; Geohazards; Climate change; Temperature (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1532-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:76:y:2015:i:2:p:1039-1061

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-014-1532-6

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:1039-1061