Entropy weight-set pair analysis based on tracer techniques for dam leakage investigation
Tao Wang,
Jian-sheng Chen (),
Ting Wang and
Shuang Wang
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 76, issue 2, 747-767
Abstract:
With the rapid development of industry and projects for ensuring the amounts of water that those industries require, the capacities and scales of hydraulic structures including reservoirs, dams, and weirs have increased sharply. Numerous dams experience some seepage, when water is held behind them; thus, dam leakage detection has been and continues to be a major concern. The basic task involves finding the path of the leakage, especially the concentrated leakage path. Using tracer techniques, we treat dam leaks as multiple attribute evaluation problems, which is one innovation presented in this paper. Entropy weight-set pair analysis, a new method of identifying leaks, is introduced. The water samples and the information flows including conductivity, pH, Cl − , D, and 18 O are set as alternatives and indexes, respectively. Then, the connection degree is calculated according to set pair analysis, followed by the weight of each index using an information entropy weight method based on the principle of maximum entropy. Finally, the integrated degree of connection of all the samples is calculated, to provide a basis for classifying water samples and judging the adequacy of the water resources. To verify the validity and feasibility of this proposed model, the Ling’ao reservoir, which is situated in Guangdong province of China’s southeastern monsoon zone and notable for its particularly heavy seepage is taken as a case study. The results indicate that the model is suitable for objectively analyzing dam seepage problems, especially given that the results match those obtained for the horizontal velocity as measured with drillings and the temperature distribution across the dam body. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Information flow; Information entropy; Multiple attribute evaluation problems; Set pair analysis; Tracer techniques; Dam leakage; China (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-014-1515-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:76:y:2015:i:2:p:747-767
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-014-1515-7
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().