EconPapers    
Economics at your fingertips  
 

Effects of errors and biases on the scaling of earthquake spatial pattern: application to the 2004 Sumatra–Andaman sequence

Simanchal Padhy (), O. Mishra, N. Subhadra, V. Dimri, O. Singh and G. Chakrabortty

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 77, issue 1, 75-96

Abstract: This study discusses the scaling properties of the spatial distribution of the December 26, 2004, Sumatra aftershocks. We estimate the spatial correlation dimension D 2 of the epicentral distribution of aftershocks recorded by a local network operated by Geological Survey of India. We estimate the value of D 2 for five blocks in the source area by using generalized correlation integral approach. We assess its bias due to finite data points, scaling range, effects of location errors, and boundary effects theoretically and apply it to real data sets. The correlation dimension was computed both for real as well as synthetic data sets that include randomly generated point sets obtained using uniform distributions and mimicking the number of events and outlines of the effective areas filled with epicenters. On comparing the results from the real data and random point sets from simulations, we found the lower limit of bias in D 2 estimates from limited data sets to be 0.26. Thus, the spatial variation in correlation dimensions among different blocks using local data sets cannot be directly compared unless the influence of bias in the real aftershock data set is taken into account. They cannot also be used to infer the geometry of the faults. We also discuss the results in order to add constraints on the use of synthetic data and of different approaches for uncertainty analysis on spatial variation of D 2 . A difference in D 2 values, rather than their absolute values, among small blocks is of interest to local data sets, which are correlated with their seismic b values. Taking into account the possible errors and biases, the average D 2 values vary from 1.05 to 1.57 in the Andaman–Nicobar region. The relative change in D 2 values can be interpreted in terms of clustering and diffuse seismic activity associated with the low and high D 2 values, respectively. Overall, a relatively high D 2 and low b value is consistent with high-magnitude, diffuse activity in space in the source region of the 2004 Sumatra earthquake. Copyright Springer Science+Business Media Dordrecht 2015

Keywords: Aftershocks; Andaman–Sumatra earthquake; Correlation dimension; Scaling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-013-0978-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:77:y:2015:i:1:p:75-96

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-013-0978-2

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:75-96