Doubling of coastal erosion under rising sea level by mid-century in Hawaii
Tiffany Anderson (),
Charles Fletcher,
Matthew Barbee,
L. Frazer and
Bradley Romine
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 78, issue 1, 75-103
Abstract:
Chronic erosion in Hawaii causes beach loss, damages homes and infrastructure, and endangers critical habitat. These problems will likely worsen with increased sea level rise (SLR). We forecast future coastal change by combining historical shoreline trends with projected accelerations in SLR (IPCC RCP8.5) using the Davidson-Arnott profile model. The resulting erosion hazard zones are overlain on aerial photos and other GIS layers to provide a tool for identifying assets exposed to future coastal erosion. We estimate rates and distances of shoreline change for ten study sites across the Hawaiian Islands. Excluding one beach (Kailua) historically dominated by accretion, approximately 92 and 96 % of the shorelines studied are projected to retreat by 2050 and 2100, respectively. Most projections (~80 %) range between 1–24 m of landward movement by 2050 (relative to 2005) and 4–60 m by 2100, except at Kailua which is projected to begin receding around 2050. Compared to projections based only on historical extrapolation, those that include accelerated SLR have an average 5.4 ± 0.4 m (±standard deviation of the average) of additional shoreline recession by 2050 and 18.7 ± 1.5 m of additional recession by 2100. Due to increasing SLR, the average shoreline recession by 2050 is nearly twice the historical extrapolation, and by 2100 it is nearly 2.5 times the historical extrapolation. Our approach accounts for accretion and long-term sediment processes (based on historical trends) in projecting future shoreline position. However, it does not incorporate potential future changes in nearshore hydrodynamics associated with accelerated SLR. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Sea level rise; Erosion; Hawaii; Reef; Shoreline (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1698-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:78:y:2015:i:1:p:75-103
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-015-1698-6
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().