Investigations on the structural setting of a landslide-prone slope by means of three-dimensional electrical resistivity tomography
A. Viero (),
A. Galgaro,
G. Morelli,
A. Breda and
R. Francese
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 78, issue 2, 1369-1385
Abstract:
Over the last decades, many investigation methods have been applied on deep-seated gravitational slope deformations (DSGSDs) to achieve a better understanding of the geometrical patterns of phenomena that often are related to fast and hazardous surface slope movements. An integrated analysis based on geological field observations and geophysical measurements was developed and tested in the Cinque Torri DSGSD area (Eastern Dolomites, Italy) to investigate the influence of the slope setting onto the dynamics of the rocky pinnacles group. These pinnacles, which lie at the top of a Mesozoic sedimentary sequence, have volumes ranging between 25,000 and 100,000 m 3 . This contribution presents the results of the electrical resistivity tomography along with detailed topographic surveys carried out in order to define the slope setting down to a depth of about 50–60 m below the surface. The geophysical investigations particularly address the location of the major faults and the lithological contact geometries. By inspecting the structural patterns of the slope which control the DSGSD, and thus the lateral spreading of rocky pinnacles at the top, the interaction between slope setting and instabilities can be inferred. Geophysical data clearly outline some tectonic-driven displacements along with the major contacts between the different lithological units. Based on these results, the structural model of the site is better defined leading to a new insight into the local stratigraphy for modeling purposes. This method can be exported to other landslide areas where the logistic difficulties and local complexities make borehole drillings ineffective at capturing the 3D slope structure and deformation features. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: DSGSD; Dolomites; Tectonics; 3D resistivity imaging; Subsurface model (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1777-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:78:y:2015:i:2:p:1369-1385
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-015-1777-8
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().