Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations
Álvaro Gómez-Gutiérrez (),
Christian Conoscenti,
Silvia Angileri,
Edoardo Rotigliano and
Susanne Schnabel
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 79, issue 1, 314 pages
Abstract:
Empirical multivariate predictive models represent an important tool to estimate gully erosion susceptibility. Topography, lithology, climate, land use and vegetation cover are commonly used as input for these approaches. In this paper, two multivariate predictive models were generated for two gully erosion processes in San Giorgio basin (Italy) and Mula River basin (Spain) using only topographical attributes as independent variables. Initially, nine models (five for San Giorgio and four for Mula) with pixel sizes ranging from 2 to 50 m were generated, and validation statistics were calculated to estimate the optimal pixel size. The best models were selected based on model performance using the area under the receiver operating characteristic (AUC) curve and the generalized cross-validation. The best pixel size was 4 m in the San Giorgio basin and 20 m in the Mula basin. The finest resolution was not necessarily the best; rather, the relationship between digital elevation model resolution and size of the landform was important. The two selected models showed an excellent performance with AUC values of 0.859 and 0.826 for San Giorgio and Mula, respectively. The Topographic Wetness Index and the general curvature were identified as key topographical attributes in San Giorgio and Mula basins, respectively. Both attributes were related to the processes observed in the field and described in the literature. Finally, maps of gully erosion susceptibility were produced for each basin. These maps showed that 22 and 20 % of San Giorgio and Mula basins, respectively, present favourable conditions for the development of gullies. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Gully erosion susceptibility; Topography; Topographical attributes; Empirical multivariate models; Digital elevation models (DEMs) (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1703-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:79:y:2015:i:1:p:291-314
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-015-1703-0
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().