Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
Jian Zhou (),
Xibing Li () and
Hani Mitri ()
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 79, issue 1, 316 pages
Abstract:
The prediction of pillar stability (PS) in hard rock mines is a crucial task for which many techniques and methods have been proposed in the literature including machine learning classification. In order to make the best use of the large variety of statistical and machine learning classification methods available, it is necessary to assess their performance before selecting a classifier and suggesting improvement. The objective of this paper is to compare different classification techniques for PS detection in hard rock mines. The data of this study consist of six features, namely pillar width, pillar height, the ratio of pillar width to its height, uniaxial compressive strength of the rock, pillar strength, and pillar stress. A total of 251 pillar cases between 1972 and 2011 are analyzed. Six supervised learning algorithms, including linear discriminant analysis, multinomial logistic regression, multilayer perceptron neural networks, support vector machine (SVM), random forest (RF), and gradient boosting machine, are evaluated for their ability to learn for PS based on different input parameter combinations. In this study, the available data set is randomly split into two parts: training set (70 %) and test set (30 %). A repeated tenfold cross-validation procedure (ten repeats) is applied to determine the optimal parameter values during modeling, and an external testing set is employed to validate the prediction performance of models. Two performance measures, namely classification accuracy rate and Cohen’s kappa, are employed. The analysis of the accuracy together with kappa for the PS data set demonstrates that SVM and RF achieve comparable median classification accuracy rate and Cohen’s kappa values. All models are fitted by “R” programs with the libraries and functions described in this study. Copyright Springer Science+Business Media Dordrecht 2015
Keywords: Pillar stability; Pillar design; Hard rock mine; Supervised learning; Classification; Repeated cross-validation; R system (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1842-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:79:y:2015:i:1:p:291-316
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069
DOI: 10.1007/s11069-015-1842-3
Access Statistics for this article
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk
More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().