EconPapers    
Economics at your fingertips  
 

Appropriate model use for predicting elevations and inundation extent for extreme flood events

Davor Kvočka (), Roger Falconer and Michaela Bray

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 79, issue 3, 1808 pages

Abstract: Flood risk assessment is generally studied using flood simulation models; however, flood risk managers often simplify the computational process; this is called a “simplification strategy”. This study investigates the appropriateness of the “simplification strategy” when used as a flood risk assessment tool for areas prone to flash flooding. The 2004 Boscastle, UK, flash flood was selected as a case study. Three different model structures were considered in this study, including: (1) a shock-capturing model, (2) a regular ADI-type flood model and (3) a diffusion wave model, i.e. a zero-inertia approach. The key findings from this paper strongly suggest that applying the “simplification strategy” is only appropriate for flood simulations with a mild slope and over relatively smooth terrains, whereas in areas susceptible to flash flooding (i.e. steep catchments), following this strategy can lead to significantly erroneous predictions of the main parameters—particularly the peak water levels and the inundation extent. For flood risk assessment of urban areas, where the emergence of flash flooding is possible, it is shown to be necessary to incorporate shock-capturing algorithms in the solution procedure, since these algorithms prevent the formation of spurious oscillations and provide a more realistic simulation of the flood levels. Copyright The Author(s) 2015

Keywords: Flash floods; Natural hazards; MacCormack scheme; Total variation diminishing (TVD); Shock-capturing; Boscastle flood; Flood modelling; DIVAST (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1926-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:79:y:2015:i:3:p:1791-1808

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-015-1926-0

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:1791-1808