EconPapers    
Economics at your fingertips  
 

A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy

I. Charvet (), A. Suppasri, H. Kimura, D. Sugawara and F. Imamura

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2015, vol. 79, issue 3, 2073-2099

Abstract: The recent losses caused by the unprecedented 2011 Great East Japan Tsunami disaster have stimulated further research efforts, notably in the mechanisms and probabilistic determination of tsunami-induced damage, in order to provide the necessary information for future risk assessment and mitigation. The stochastic approach typically adopts fragility functions, which express the probability that a building will reach or exceed a predefined damage level usually for one, sometimes several measures of tsunami intensity. However, improvements in the derivation of fragility functions are still needed in order to yield reliable predictions of tsunami damage to buildings. In particular, extensive disaggregated databases, as well as measures of tsunami intensity beyond the commonly used tsunami flow depth should be used to potentially capture variations in the data which have not been explained by previous models. This study proposes to derive fragility functions with additional intensity measures for the city of Kesennuma, which was extensively damaged during the 2011 tsunami and for which a large and disaggregated dataset of building damage is available. In addition to the surveyed tsunami flow depth, the numerically estimated flow velocities as well as a binary indicator of debris impact are included in the model and used simultaneously to estimate building damage probabilities. Following the recently proposed methodology for fragility estimation based on generalized linear models, which overcomes the shortcomings of classic linear regression in fragility analyses, ordinal regression is applied and the reliability of the model estimates is assessed using a proposed penalized accuracy measure, more suitable than the traditional classification error rate for ordinal models. In order to assess the predictive power of the model, penalized accuracy is estimated through a repeated tenfold cross-validation scheme. For the first time, multivariate tsunami fragility functions are derived and represented in the form of fragility surfaces. The results show that the model is able to predict tsunami damage with satisfactory predictive accuracy and that debris impact is a crucial factor in the determination of building collapse probabilities. Copyright The Author(s) 2015

Keywords: Tsunami; Debris; Fragility functions; Accuracy; Cross-validation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1947-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:79:y:2015:i:3:p:2073-2099

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-015-1947-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2073-2099