EconPapers    
Economics at your fingertips  
 

Spatial and temporal water-level variations in the Texas portion of the Ogallala Aquifer

Romildo Brito Neto (), Celso Santos (), Kevin Mulligan () and Lucia Barbato ()

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2016, vol. 80, issue 1, 365 pages

Abstract: Groundwater management plays a key role in conserving the volume of available water and maintaining water quality. The goal of this study is to demonstrate how an exploratory data analysis (EDA) technique can be used to identify hazard areas in the Texas (USA) portion of the Ogallala Aquifer where groundwater extraction far exceeds natural recharge. Using data from 9092 observation wells, the study covers the 53-year period from 1960 to 2012. To map changes in the aquifer over time, kriging was used to interpolate a water table elevation surface for each year in the study. Using a GIS, the water table elevation surfaces were overlaid and analyzed to identify those areas with the greatest drawdown. Between 1962 and 2012, the total area where the saturated thickness of the aquifer was greater than 50 m decreased by 21.76 %. A subset of 492 observation wells (those with a complete time series) was selected to analyze trends in the water table elevation using the Mann–Kendall test, and grouped by hierarchical cluster analysis. The Mann–Kendall test, applying a 99 % level of confidence in the hypothesis testing, indicated that 74.39 % of the 492 time series showed a declining trend in the water table. Hierarchical cluster analysis (using dendrograms and heat maps) resulted in the formation of eight groups, highlighting one group of wells (Cluster 3) with a particularly steep decline in the water table over the 53-year time series. When the wells contained in Cluster 3 were overlaid on a map of the change in saturated thickness, the results converge, indicating the hazard area of aquifer decline. This paper highlights an EDA technique to demonstrate that using differing temporal–spatial analytical methods together, as applied in this research, results in a high level of reliability. In a confined aquifer system, mapping changes in water level and hierarchical cluster analysis can be used together to identify those hazard areas where conservation efforts are most needed to slow the rate of aquifer decline. Copyright Springer Science+Business Media Dordrecht 2016

Keywords: Groundwater; Spatial interpolation; Cluster analysis; Mann–Kendall test (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s11069-015-1971-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:nathaz:v:80:y:2016:i:1:p:351-365

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11069

DOI: 10.1007/s11069-015-1971-8

Access Statistics for this article

Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards is currently edited by Thomas Glade, Tad S. Murty and Vladimír Schenk

More articles in Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards from Springer, International Society for the Prevention and Mitigation of Natural Hazards
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:351-365